The Usefulness of POINT OF CARE ULTRASOUND in Family Medicine 
An Observational Study

Stephen Erickson, MD FAAFP
Jefferson Healthcare, Pt. Townsend, WA

Introduction

Physician-performed ultrasound at the point of care as an extension of traditional physical examination technique has been promoted in the medical literature to improve the accuracy of the clinical exam in Family Medicine, and other primary care disciplines. However, most of the current body of clinical research on this topic comes from the setting of the hospital Emergency Department. Many CME resources on the topic of POCUS concentrate on the ultrasound exam protocols and techniques developed by and thought to be most useful for Emergency Physicians. This study reports and quantifies the usefulness of POCUS for a family physician in full time clinical practice.

Methodology

A board-certified Family Physician with 20 years of clinical experience performing basic obstetric ultrasound introduced wider practice of point of care ultrasound (POCUS) into clinical practice after undertaking a curriculum of live continuing medical education seminars (15 hours) and self-study (approximately 30 hours) to rapidly integrate as many point of care ultrasound applications and examination protocols as possible.

POCUS exams were performed as indications arose throughout routine clinical practice. A real time log was maintained during this time period for quality and credentialing purposes of each exam including, in the physician’s opinion, whether the availability and/or results of the POCUS exam resulted in any change of clinical management of the patient.

Data is reported for six continuous months of use in the practice setting for this observational study was a rural, full-spectrum family medicine clinic. The clinic is a federally designated rural health clinic located adjacent to and owned by a critical access hospital. The clinic serves a high percentage of Medicare and Medicaid patients and sees low volume obstetric care. The study physician saw, on average, about 20 unique patients per clinic day.

Results

Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting. Patient. Data is reported for six continuous months of use in the practice setting.}

Discussion

This study quantifies how useful POCUS can be in a family medicine practice. This information is important to the physician contemplating the investments of both time (in training necessary to gain POCUS skills) and capital (required to purchase an ultrasound machine) required.

These results would support those investments. POCUS was frequently indicated, and frequently helpful in guiding further treatment or testing. It is also estimated that a patient who has their health condition visually displayed and explained during a POCUS exam may be more motivated to comply with treatment recommendations.

This data may also inform family medicine residency programs and teachers of primary care POCUS. It would be beneficial for training programs and continuing medical education providers to focus their educational content on those skills that are most immediately useful to practicing Family Physicians. These results would suggest that musculoskeletal ultrasound demands a much more prominent place in primary care POCUS training. POCUS of lung, OB, soft tissue, abdomen, bladder/kidney, and deep vasculature were also frequently indicated in this study, demonstrating the broad range of problems managed in a typical Family Medicine practice.

Frequency of Use

- POCUS was indicated in approximately 10% of all clinical encounters during the study period.
- The relative frequency of POCUS scanning trended slightly upward over time.

Comparison to other office diagnostics:

- POCUS was more useful than any other common ancillary study in our clinic.
- The results of POCUS led to a change in clinical management of the patient 31% of the time.

The most frequently performed type of POCUS scans in this practice:

1. MSK (41%)
2. Lung (15%)
3. Obstetric (9%)
4. Soft Tissue (8%)
5. Cardiac (6%)

Acknowledgements

Thanks for administrative and data support from:
Dunia Faulx, Sean Downing, Jacob Davidson
This 87 year old gentleman was brought to clinic by his wife who reported “He just hasn’t been acting himself for the last day or two.” History was complicated by the patient’s advanced dementia and poor ability to communicate.

Vital signs and physical exam were rather unremarkable, but mildly labored breathing pattern led the physician to perform lung ultrasound.

Diffuse bilateral B lines and pleural effusions were noted on POCUS, suggesting new onset CHF. He was transferred to the hospital emergency department where further testing confirmed subacute MI as the cause.

A 6 year old boy presented with a 36 hour history of left hip pain and worsening limp. There was no history of injury, and exam was normal except for some mild pain with passive flexion or extension of the hip.

Ultrasound of the hip demonstrated an effusion of the left femoroacetabular joint. This was confirmed by ultrasound comparison of the contralateral joint.

The effusion was easily and safely aspirated in the office using ultrasound guidance, and subsequent laboratory studies of the aspirate confirmed the diagnosis of toxic synovitis. The patient was observed as an outpatient and made a complete recovery within a few days.